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Measurements on the swing of a baseball bat are analyzed to extract the basic mechanics of the
swing. The force acting on the bat is determined from the velocity of the center of mass, and the
angular velocity of the bat provides additional information on the couple exerted by the two hands.
The motion of the bat was calculated for other force-couple combinations to determine their effects
on the swing of the bat. It was found that a couple is needed to start the swing, and a large opposing
couple is required near the end of the swing to prevent the bat rotating through an excessive angle
before it impacts with the ball. © 2009 American Association of Physics Teachers.
�DOI: 10.1119/1.2983146�
I. INTRODUCTION

Swinging a bat, like walking, is a task that is much easier
to perform in practice than to describe in terms of the rel-
evant mechanics. Part of the problem is that many body seg-
ments are involved, with the result that a complete analysis
of the swing is a complex problem involving both the bio-
mechanics of the batter and the mechanics of the bat.1–3 The
swing of a bat can be analyzed approximately by treating the
system as a double pendulum, in which case all body seg-
ments collapse into a single forearm pivoting about an axis at
one end. The other end of the forearm is attached by a hinge
to the implement being swung.4–9

In this paper the biomechanics of the problem is largely
ignored by focusing on the physics of swinging a bat, the
main question being, “What forces and torques, applied at
the handle end, are required to swing a bat and in what
directions do they act?” Despite the fundamental nature of
this question and the fact that baseball is the national pastime
in the United States, this question has not been examined
quantitatively. However, it has been considered in relation to
the swing of a golf club.10,11

Visual observation of the action of a right-handed batter
indicates that the bat is swung in a roughly circular arc using
the left hand to pull along the handle while the right hand
pushes approximately at right angles to the bat. This obser-
vation suggests that the left hand provides the necessary cen-
tripetal force, while the right hand acts to increase the bat
rotation and translation speed. In fact, the situation is more
complicated than this simple model suggests, involving sev-
eral stages. Initially, the elbows are bent and the bat is swung
close to the body at relatively low speed in a small radius
arc. During this stage, the direction of the force on the handle
is in the opposite direction to the direction of motion of the
handle. As the bat speed increases, both arms straighten, the
arc radius increases, and the bat swings to be approximately
in line with each arm at the instant the bat collides with the
ball. During the latter stage of the swing, both arms pull on
the handle in a direction almost at right angles to the motion
of the handle. A similar sequence of events is observed when
swinging almost any object, including a golf club, cricket
bat, tennis racquet, axe, and hammer, but we focus in this
paper on the swing of a bat.

To provide a realistic model of the swing of a bat, the
motion of a baseball bat was first determined experimentally
by filming a particular swing in order to calculate the mag-

nitude and the direction of the force on the handle. The
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torque required to generate the observed angular acceleration
of the bat was also determined, providing additional infor-
mation on the couple arising from equal and opposite forces
applied to the handle. The inverse problem was then consid-
ered. That is, a different combination of forces and torques
was assumed to calculate the effect on the motion of the bat.
A surprising result is that a large negative couple is required
late in the swing to prevent the bat from rotating through an
excessive angle before it impacts with the ball.

II. EXPERIMENTAL DATA

Data on the swing of a baseball bat were obtained by
filming a right-handed player from the Sydney University
baseball team using a video camera mounted about 4 m
above his head. The camera was operated at 25 frames /s
�f/s� with an exposure time of 2 ms to minimize blurring of
each image. Each frame consists of two interlaced images.
The two images were separated using SWINGER PRO
software12 to capture the swing action at an effective frame
rate of 50 f /s.13 The video was taken in a laboratory, the
batter swung at an imaginary ball, and the batter kept both
feet firmly planted on the floor at marked positions under the
camera. The batter was instructed to swing the bat as fast as
possible and to swing in a horizontal plane at waist height
after releasing the bat from his shoulder. Because the camera
was mounted above his head, and only a single camera was
used, the results described in the following refer to the hori-
zontal components of the bat velocity and the forces and
torques acting on the handle.

The batter swung several different bats at maximum speed
to determine how his swing speed varied with bat mass. One
particular swing, using an 871 g, 840 mm long Louisville
Slugger R161 wood bat, was selected for further analysis.
The center of mass of the bat was located 560 mm from the
knob end, the barrel diameter was 66.7 mm �2 5 /8 in.�, and
its moment of inertia about an axis through the center of
mass, Icm, was measured to be 0.039�0.001 kg m2.

A. Bat positions and rotation axes

The positions of the bat at 20 ms intervals are shown in
Fig. 1, starting at time t=0 when the bat begins its forward
rotation. The batter stood with the line joining his two feet
aligned parallel to the laboratory x axis, and swung the bat at
an imaginary ball incident in a direction parallel to the x axis.

The ball would therefore have been struck at a time near t
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=400 ms, the bat having rotated through an angle of about
300°. The bat initially rotated about a fixed axis in the
handle, near the batter’s right shoulder. During this time in-
terval the batter did not move his arms with respect to his
trunk, but rotated his legs, hips, and shoulders to start the
swing. The batter’s head remained fixed to within �30 mm
during the entire swing. The initial axis of rotation of the bat
can be identified in Fig. 1 as the intersection point of the
three images of the bat at times t=0, t=180, and t=200 ms.
The bat rotated about this axis during the interval 0� t
�200 ms. After this time, the rotation axis of the bat moved
to a point well outside the bat and then moved to a point near
the knob end of the bat just before impact with the ball.

A more relevant axis in terms of the force on the bat is the
axis of rotation of the bat center of mass. This axis is the
center of curvature of the path followed by the center of
mass. The axis is shown in Fig. 1 by the sequence of solid
dots and was located using the geometrical construction
shown in Fig. 2. The axis was taken as the intersection point
of the radius vectors drawn in directions perpendicular to the
velocity vectors of the bat center of mass connecting the
position of the center of mass of the bat from one frame to
the next. Each radius vector was constructed to pass through
the midpoint of the corresponding velocity vector, as shown
in Fig. 2. This procedure fits a circle passing through three
sequential locations of the bat center of mass, the center of
the circle being taken as the instantaneous axis of rotation of
the center of mass at time t. The dashed lines in Fig. 1 join
the bat center of mass to its corresponding axis point and
therefore represent the direction of the centripetal force on
the bat, as well as the magnitude, R, and direction of the

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1

y
(m

)

x (m)

460

440

420
400 ms

380

360

340

320

300

280 260

240

220

200

0.0

180 ms

CMTIP

KNOB

Radius vector (shows direction of centripetal force)

Fig. 1. Observed positions of the bat at 20 ms intervals. The tip of the bat
moves along the outer spiral path, while the knob end follows the inner,
semicircular path. The small innermost circle of solid black dots denotes the
instantaneous center of curvature of the path followed by the bat center of
mass �open circles�. The direction of the centripetal force on the bat is
perpendicular to the path followed by the center of mass, as indicated by the
dashed lines.
radius vector R.
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Each part of the bat rotates at angular velocity � about an
axis through the bat center of mass while the center of mass
follows the spiral path indicated in Fig. 1. In a reference
frame attached to the bat center of mass, each part of the bat
rotates in a circular orbit about a fixed axis through the cen-
ter of mass. In the laboratory frame of reference the bat
rotates about an axis that is not attached to the bat center of
mass, although the angular velocity � remains the same in
both reference frames. For example, suppose that the knob
end of the bat rotates backward at 10 m /s relative to the
center of mass, while the center of mass moves forward at
10 m /s in the laboratory frame. The knob is at rest in the
laboratory frame, so the axis of rotation of the bat is at the
knob end. We can therefore define � as d� /dt, where � is the
angle between the long axis of the bat and the laboratory x
axis, in which case the torque, �, on the bat about an axis
through the bat center of mass is given by �= Icmd� /dt. The
task of the batter is to rotate the bat center of mass along the
spiral path indicated in Fig. 1, while simultaneously rotating
the bat at angular velocity � so that the barrel lines up at a
suitable angle to impact the ball. In Fig. 1 the barrel extends
from the tip of the bat to the center of mass. We will refer to
� as the angular velocity of the bat. The angular velocity of
the bat center of mass about the axis of rotation of the bat
center of mass is defined in Sec. III.

B. Forces acting on the bat

The velocity V of the bat center of mass was obtained by
plotting the x and y coordinates of the center of mass �mea-
sured in the laboratory frame� as functions of time and by
fitting fifth order polynomials during the time intervals 0
� t�300 ms and 280� t�500 ms. This procedure im-
proved the overall fit �compared with a single fit over the
entire time interval� because the velocity changed relatively
slowly during the first time interval and more rapidly during
the second interval. The Vx and Vy velocity components were
obtained by differentiating the polynomial functions to cal-
culate both the velocity V= �Vx

2+Vy
2�1/2 and the acceleration

components dV /dt and V2 /R.
The two time intervals also coincided with a change in the

batting action that affected the overall accuracy of the mea-
sured bat speed. As indicated in Fig. 1, the apparent length of
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Fig. 2. Geometrical construction used to determine the radius of curvature R
at time t of the path followed by the bat center of mass. Velocity vectors are
shown with arrowheads.
the bat varied during the swing, as a result of two effects.
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During the first time interval, the bat was swung at about
shoulder height and appeared on film to be longer �because it
was closer to the camera� than that during the second time
interval while the bat was being swung at about waist height.
This effect was offset to some extent by the fact that the bat
was initially inclined at an angle of about 30° to the horizon-
tal plane and was then rotated to swing in a horizontal plane
during the latter stages of the swing. The velocity measure-
ments were scaled to the known bat length during both time
intervals, resulting in an estimated measurement error in the
magnitude of the bat velocity of about 10% during the first
time interval and an error of about 5% during the second
time interval. These errors could have been reduced by using
additional cameras to measure the incline angle of the bat,
but such a measurement would have added considerably to
the complexity of the experiment. If a batter were to swing in
a two-dimensional, inclined plane, then an alternative im-
provement would be to mount a single camera above and
forward of the batter’s head so that the camera axis is aligned
perpendicular to the swing plane.

The angular velocity of the bat was calculated directly
from the raw data as �=�� /�t, where �� is the change in
the rotation angle of the bat from one frame to the next
during the time interval �t=0.02 s. The rotation angle of the
bat was determined to within �1° from the video. The
angular velocity is shown in Fig. 3, together with the result
for V.

In order to swing a bat the batter exerts a net force and a
net torque on the handle end using both hands. He does what
he needs to do, by instinct. From a physics point of view it
helps to resolve the net force into two familiar, perpendicular
components. One component is the centripetal force MV2 /R,
where M is the mass of the bat. The other component, acting
parallel to the velocity vector, has magnitude MdV /dt. The
two components are shown in Fig. 4. The component
MdV /dt acts in a direction perpendicular to the dashed lines
in Fig. 1 and acts to increase the bat center of mass speed. In
Sec. III we consider the inverse problem, assuming that the
only information available is the magnitude and direction of
force acting on the handle. To calculate the motion of the bat
it is convenient to specify the resultant force as a function of
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Fig. 3. Measured values of the angular velocity of the bat �, and the linear
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time. Figure 5 shows the resultant force, F, on the bat from
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the experimental data, and the angle � between F and the
longitudinal axis of the bat, derived from the results in
Figs. 1 and 4.

C. Torque acting on the bat

The resultant force on a bat does not act along a line
through the bat center of mass. Rather, the force is applied at
the handle end of the bat. The force is distributed by the two
hands over a length of about 200 mm along the handle, but
can be regarded as being applied at a point about 100 mm
from the knob, or at a distance d=0.46 m from the bat center
of mass. The resultant force generates a torque that can use-
fully be regarded as the sum of the two separate torques
generated by the two perpendicular force components. If � is
the angle between the longitudinal axis of the bat and the
radius vector, R, then the resulting torque about an axis
through the bat center of mass is given by �F=�A+�B, where
�A= �MV2 /R�d sin � is the torque arising from the centripetal
force and �B=−�MdV /dt�d cos � is the torque arising from
the MdV /dt force component. The torque component �B is
negative throughout the swing, meaning that on its own it
would cause the bat to rotate in the wrong direction. In ad-
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dition, the two hands apply a couple C, with the result that
the net torque acting about an axis through the bat center of
mass is given by

�F + C = �A + �B + C = Icmd�/dt . �1�

Because d� /dt is about 100 rad /s2 during most of the swing,
the net torque on the bat is about 3.9 Nm. However, the three
components of that torque are all much larger than 3.9 Nm in
magnitude.

Equation �1� can be used to determine the couple acting on
the bat, given that the other terms can be determined experi-
mentally. The resulting value of C is shown in Fig. 6, to-
gether with the contributions �A and �B. At the beginning of
the swing �A is small because the centripetal force is small.
Near impact at t�400 ms, �A drops to zero when the line of
action of the centripetal force passes through the handle. At
other times during the swing, �A is the main component of
the total torque on the bat, reaching a peak value of 75 Nm
near the end of the swing.

D. Angular displacement of bat and body segments

Figure 7 shows the positions of the batter’s arms, his head,
left foot, and markers on each shoulder at eight times during
the swing. Each arm is bent at the elbow in a different man-
ner. The left arm remains relatively straight during the whole
swing, while the right arm remains bent at the elbow during
most of the swing cycle, straightening out just as the batter
impacts the ball. This sequence of events is common to all
batters, as can be seen by observing batters in action or by
analyzing slow motion film of batters at web sites such as
YouTube. The reason for the different behavior of the left
and right arms is related to the geometry of the swing. As
shown in Fig. 7, the horizontal distance between the left
shoulder and the bat handle is larger than that between the
right shoulder and the bat handle, so the right elbow must
necessarily bend at a greater angle.

The angular velocity of the left forearm increased to a
maximum of 16 rad /s at t=350 ms and then decreased to
almost zero when the forearm was in line with the bat near
t=420 ms. The angular velocity of the right forearm also
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increased to a maximum of 16 rad /s, reaching maximum
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angular velocity near t=420 ms. Both forearms were ap-
proximately at right angles to the bat near t=340 ms, indi-
cating that the batter deliberately delayed relaxing his wrists
until just before impact with the �imaginary� ball, by which
times both forearms were approximately in line with the bat.
By locking the wrists in this manner, the batter was able to
apply a positive couple to the bat early in the swing, and a
negative couple later in the swing to delay the rapid rotation
of the bat until just before impact.

E. Force exerted by each arm

From the initial positions of the arms in Fig. 7 it might
appear that the left arm is pulling and the right arm is push-
ing on the handle, because the handle is rotating counter-
clockwise. However, the bat center of mass moves in the
opposite direction to the handle end during the initial part of
the swing, so the net transverse force on the handle must act
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Fig. 7. Overhead view of the swing at eight times showing the positions of
the bat, the four arm segments �LF=left forearm, RF=right forearm�, the
batter’s head and shoulders, and his stationary left foot.
in the opposite direction to the direction of motion of the
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handle. Both arms therefore pull in opposite directions on the
handle, the right arm exerting a greater pull force than the
left arm.

The magnitude and direction of the transverse force ex-
erted by each arm can be estimated by combining informa-
tion on the net force, the applied couple, and the axis of
rotation of the bat. Consider the situation in Fig. 8�a�, which
shows the forces exerted by the two arms at t=100 ms, early
in the swing. The net force on the bat is 20 N and it acts at an
angle �=60° to the long axis of the bat. In addition, the two
arms apply a couple C=10 Nm, which can be represented by
equal and opposite 100 N forces acting at right angles to the
bat and spaced 0.1 m apart. As a first approximation, each
arm therefore exerts an equal and opposite transverse force
of about 100 N on the bat. This estimate can be improved by
considering the location of the rotation axis of the bat.

The rotation axis of the bat was located at a distance L
=0.3 m from the bat center of mass for the first 200 ms of
the swing. The net force component acting in a direction
parallel to the long axis of the bat does not contribute to the
torque acting on the bat. We can assume that the net trans-
verse force and the torque on the bat arise from two oppo-
sitely directed force components F1 and F2, acting perpen-
dicular to the bat and spaced a distance 0.1 m apart. In that
case the net force F2−F1=MdV /dt, where dV /dt=Ld� /dt.
Because the net torque is equal to Icmd� /dt, it is easy to
show that F2 /F1=1.18 when L=0.3 m and Icm
=0.039 kg m2. The force exerted by each arm must therefore
be approximately as shown in Fig. 8�b�. The only uncertainty
is whether it is the left or the right arm that supplies the small
force component acting parallel to the long axis of the bat, or
whether each arm contributes about equally.

A similar analysis can be applied later in the swing. For
example, at t=340 ms the net force on the bat is 300 N act-
ing at �=−20° to the long axis of the bat, the main compo-
nent being due to the centripetal force. In this case the torque
due to F acts in the correct direction to increase the angular
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Fig. 8. �a� At t=100 ms there is a net force F=20 N on the bat plus a couple
C=10 Nm. F and C act on the handle near the left end of the bat. The knob
at the far left end helps to prevent the bat from slipping out of the batter’s
hands. �b� The force exerted by each arm, assuming that the left arm exerts
the small force component in a direction parallel to the long axis of the bat.
velocity of the bat, but it is opposed by a negative couple,
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C=−45 N, with the result that the total torque on the bat is
much reduced and the bat approaches its maximum angular
velocity at this time. The couple can be represented by two
equal and opposite 450 N forces spaced 0.1 m apart, acting
in directions perpendicular to the bat. Because the transverse
force on the bat is 300 sin 20° =102 N, the left arm exerts a
transverse push force of 399 N and the right arm exerts a
transverse pulling force of 501 N. In addition, both arms
together exert a pulling force along the handle of
300 cos 20° =282 N.

The large negative couple applied late in the swing is not
only counterintuitive, but appears to be inconsistent with the
action of the arms shown in Fig. 7. From the direction of
motion of the arms during the interval 300–380 ms in Fig. 7,
it appears that the left forearm is pulling on the handle and
the right forearm is pushing, as if the batter is deliberately
attempting to increase the angular velocity of the bat. How-
ever, this interpretation is not consistent with the experimen-
tal data. The largest torque component on the bat is due to
the centripetal force. By itself, that torque component would
cause the bat to rotate much more rapidly than it actually
does, with the result that the bat would rotate through an
excessive angle by the time it arrives at the impact point. If
the bat were allowed to rotate at such a high speed, the
handle would push firmly on the batter’s left hand and tend
to pull out of his right hand. The reaction force exerted by
the batter is such that the left hand pushes on the handle and
the right hand pulls on the handle, thereby generating the
large negative couple that restricts the total torque on the bat
to a value less than 6 Nm throughout the swing.

III. BAT SWING MODEL

The model used to calculate the swing of a bat in a two-
dimensional �x ,y� plane is shown in Fig. 9. Bats are not
normally swung in a horizontal plane, but tend to be swung
in a plane inclined to the horizontal to project the ball up-
ward or downward. The angle � is the angle between the
applied force F and the longitudinal axis of the bat, and the
angle � is the angle between the longitudinal axis of the bat
and the x axis. The positive direction of � is defined as
shown in Fig. 9. When � is positive, the torque due to F acts
in the “wrong” direction, meaning that the batter needs to
exert a positive couple to rotate the bat in the “right” �coun-

F
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y

CM

α

β

ω

d

Fig. 9. Geometry used to calculate the swing of a bat, showing the position
of the bat and the direction of the force on the handle near the start of the
swing. In this position � is taken to be positive and � is taken to be negative.
As the bat rotates in a counterclockwise sense, � decreases and � increases
�to a positive value when the barrel is above the x axis� at a rate �
=d� /dt.
terclockwise� direction. The equations of motion are
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d2x

dt2 = − �F/M�cos�� − �� , �2�

d2y

dt2 = �F/M�sin�� − �� , �3�

d2�

dt2 = �C − Fd sin ��/Icm, �4�

where d is the distance between the bat center of mass and
the point of application of F on the handle, taken to be
0.46 m in the following. The simplicity of the three equa-
tions of motion stands in stark contrast to the complex set of
relations normally used to describe the double pendulum
model,6 and allows the basic mechanics to be extracted in a
more transparent manner.

Equations �2�–�4� could be used to examine a variety of
circular motion problems, including the discus and hammer
throw in athletics and the acceleration from rest of an object
approaching uniform circular motion. Uniform circular mo-
tion results when C=0 and �=0. To study the swing of a bat,
Eqs. �2�–�4� were solved numerically for conditions similar
to the measured swing. Two approaches were used to find the
solutions. The first approach was to specify F�t�, ��t�, and
C�t� and then calculate the bat trajectory. It was found that
the calculated trajectory was very sensitive to small changes
in all three functions. A change of only 1% or 2% in the
magnitude of any one function caused the bat center of mass
to follow a path that missed the incoming ball by about
0.5 m, either by spiraling inward toward the batter or by
spiraling outward toward first base. An alternative method of
solving Eqs. �2�–�4� was adopted by specifying the trajectory
in order to determine the required forces and torques, in a
manner similar to that used to analyze the experimental data.

A good fit to the experimentally observed bat center of
mass trajectory is the logarithmic spiral shown in Fig. 10,
defined by

R = 0.25e0.23
, �5�

where �R, 
� are the polar coordinates of the bat center of
mass with respect to a fixed laboratory axis. In Fig. 1 the best
fit axis is located at x=−0.25 m and y=0.55 m, near the
center of the small circle of solid dots. The x ,y coordinates
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Fig. 10. The spiral path R=0.25e0.23
 followed by the bat center of mass.
The bat is shown arriving at 
=270°, having rotated to an angular position
where �=240°. If the bat struck the ball in this position, the ball would head
toward first base rather than straight back toward the pitcher. The force F is
shown acting at a positive angle � to the long axis of the bat.
of the bat center of mass are then x=R cos 
 and y=R sin 
.
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For example, at t=0 the bat center of mass is located at R
=0.25 m and 
=0. In Fig. 1 the bat center of mass arrives at

=� /2 rad at t=0.25 s, where x=0 and y=R=0.359 m �with
respect to the polar coordinate axis�. If we use dR /dt
=0.23Rd
 /dt, we find

Vx =
dx

dt
= �0.23 cos 
 − sin 
�R

d


dt
, �6�

Vy =
dy

dt
= �0.23 sin 
 + cos 
�R

d


dt
, �7�

and the linear velocity of the bat center of mass is

V = �Vx
2 + Vy

2�1/2 = 1.026R
d


dt
. �8�

Differentiation of Eqs. �6� and �7� gives the acceleration
components ax=dVx /dt and ay =dVy /dt, from which we can
calculate the resultant force F=M�ax

2+ay
2�1/2 and the angle

�−�=sin−1�May /F�, for a given 
�t� function. The ��t� or
��t� functions can be chosen arbitrarily. If one of these func-
tions is specified, the other is determined by the value of
�−�, while the required couple is determined by Eq. �4�.

The centripetal force was determined using the geometri-
cal construction in Fig. 2 to locate the center of curvature of
the spiral path and to determine the magnitude and direction
of the corresponding radius vector. The center of curvature
does not coincide with the �x=0, y=0� origin in Fig. 10. At

=180° for example, a straight line drawn perpendicular to
the spiral path would pass below the origin, as can be seen
by inspection. The slope of that line can be determined ana-
lytically from the slope dy /dx of the line tangential to the
spiral path at 
=180°. The spiral path can be expressed in
the form y2=R2−x2, where R is given by Eq. �5�. The inter-
section point of the radius vectors drawn perpendicular to the
spiral path shows that the center of curvature traces out a
path that is essentially the same as that traced out by the
small circle of dots in Fig. 1. Consequently, the direction of
the centripetal force for the spiral trajectory in Fig. 10, at any
point along the trajectory, is essentially the same as that
shown in Fig. 1.

IV. MODEL CALCULATIONS

Two examples are now considered where the bat rotation
angle increases from �=−33° at t=0 to about �=270° at t
=0.40 s, while the bat center of mass rotates from the initial

=0 position to 
=270° at t=0.4 s. In this manner the bat
rotates so that the bat is aligned approximately along the y
axis when it collides at x=0 and t=0.4 s with a ball incident
parallel to the x axis. These parameters were chosen to fit the
experimental data in Fig. 1. Figure 11 shows calculated re-
sults for a bat swung with constant angular velocity, and Fig.
12 shows an example where the bat was swung with constant
angular acceleration. Details of the calculations are given in
the Appendix.

A bat is not normally swung at constant angular velocity,
but it is instructive to consider this special case to examine
some of the effects of the spiral trajectory. In Fig. 11 the bat
center of mass rotates along a spiral path at a constant angu-
lar velocity d
 /dt=11.78 rad /s. The velocity V increases in
an approximately linear fashion from 3.0 m /s at t=0 to

8.9 m /s at t=0.4 s, and the force F increases from 32.2 N �at
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t=0� to 95.3 N �at t=0.4 s�. For uniform circular motion V
and F would remain constant in time, but in the present case
there is a factor of 2.96 increase in both V and F due to the
factor of 2.96 increase in R from t=0 to t=0.4 s. A signifi-
cant positive couple is required to swing the bat toward the
end of the swing, because the centripetal force on the bat
tends to rotate the bat in the “wrong” direction. At the be-
ginning of the swing a small negative couple is required to
swing the bat because the net force on the bat tends to rotate
the bat too fast to maintain a constant angular velocity.

If a bat is swung at constant angular velocity along a spiral
path, the bat speed at the impact point is relatively low. A
larger impact speed results if the angular speed, d
 /dt, in-
creases during the swing, assuming that the bat is swung
over the same time interval. In Fig. 12 the linear speed of the
bat center of mass increased to 17.87 m /s at the impact po-
sition �starting from rest� or at about twice the linear speed of
the constant angular velocity case, and the force F increased
to 406 N at t=0.4 s.

The results in Fig. 12 provide a good fit to the experimen-
tal data in Figs. 5 and 6, although a better fit can be obtained
with a higher order 
�t� function. A batter is not constrained
to accelerate a bat at a uniform rate. Nevertheless, the es-
sence of the swing is captured in Fig. 12, and the uniform
acceleration model provides a good basis for analyzing other
swings. Similarly, batters do not always swing a bat at the
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maximum speed possible, nor does the bat swing in a strictly
two-dimensional plane. Sometimes, batters hold the bat far-
ther up the handle to obtain improved control of the swing.
An extension of the present model to consider these addi-
tional features is beyond the scope of the present paper, but
could form the basis of some interesting student projects.

V. DISCUSSION

The small positive couple required to start the swing of a
bat or a club is well known,4–9 and is commonly described as
a consequence of the player cocking the wrists to maintain a
fixed angle of about 90° between the implement and the
forearms. The couple required to maintain this fixed angle
decreases as the bat accelerates, due to the increasing torque
resulting from the increasing centripetal force on the bat.
When the required couple drops to zero, a batter or golfer
could then continue to swing the bat or club by relaxing the
wrists slightly �while still maintaining a firm grip on the
handle�, in which case the wrists would behave as a rela-
tively free hinge. A similar result is obtained with a mechani-
cal double pendulum. A mechanical double pendulum can be
provided with a stop to ensure that the angle between the two
arms cannot exceed 90°. If the two arms of the pendulum are
connected by a free hinge, then the stop exerts a couple on
the lower arm at the start of the swing, but the couple drops
to zero during the swing, and then remains zero while the
two arms swing freely.4 However, the two arms of a me-
chanical double pendulum do not necessarily line up at the
bottom of the swing, as is required for the swing of a bat.

A bat requires a large negative couple near the end of the
swing so that the bat lines up correctly on impact with the
ball. The latter feature has been noted by Vaughan11 in rela-
tion to the measured swing of a golf club, but it has not
received the attention it deserves. Instead, most authors con-
centrate on the effect of varying the wrist torque, thereby
giving a misleading picture of the torque required to swing a
bat. For example, Jorgensen6 found that a slightly increased
club head speed results if the wrists apply a negative torque
of 2.8 Nm for 0.1 s to hinder the uncocking process. Sprig-
ings and Neal8 found that the club head speed could be in-
creased by 9% by applying a positive wrist torque of 20 Nm
for 0.1 s just prior to impact with the ball. Both of these
pictures are misleading because the authors invoke a wrist
torque to apply the initial positive couple to start the swing,
and then ignore the large negative couple required to com-
plete the swing. The large negative couple could presumably
be increased or decreased by using the wrists in an active
rather than passive manner, but the contribution of the wrist
torque to the total couple has not been thoroughly investi-
gated. The couple exerted by the two arms, pulling and push-
ing in opposite directions on the handle, is likely to be much
larger than the couple exerted by the wrists. Using one wrist
alone, most batters would have difficulty supporting a 2 kg
mass at the end of a horizontal bat, indicating that the total
wrist torque is unlikely to exceed about 30 Nm, using maxi-
mum effort. In practice, the wrists tend to be relaxed near the
end of the swing, in which case the wrist torque might be
only about 10 Nm. In contrast, the negative couple required

to swing the bat in Fig. 1 was almost 60 Nm.
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VI. CONCLUSIONS

Experimental and theoretical results concerning the swing
of a baseball bat indicate that a batter must apply a small
positive couple to start the swing and a large negative couple
to complete the swing. The mechanics of this process can be
modeled purely in terms of the forces and torques acting on
the bat, without being concerned with the biomechanics of
the problem. In this case it is convenient to assume that the
center of mass of the bat rotates in a logarithmical spiral with
constant angular acceleration. It would be interesting to use
such a model to explore a number of further questions re-
garding the swing of a bat not considered in the present
paper. One question is how a batter might maximize the ve-
locity at the impact point on the bat. The question is whether
the batter should attempt to maximize the angular velocity of
the bat, or whether it is more important to maximize the
linear velocity of the center of mass. Another question is
whether a particular batter might benefit by using a lighter or
heavier bat or a bat with a larger or smaller moment of iner-
tia. The model developed in this paper will assist in provid-
ing partial answers, but is unlikely to provide complete an-
swers because the forces and torques applied to a bat depend
on the forces and torques exerted by all the various body
segments used by the batter. In that respect an important
issue that still has to be resolved is the extent to which the
wrists play an active role in providing the initial and final
couples required to swing a bat.
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APPENDIX: MODEL PARAMETERS

The results in Fig. 11 were obtained by assuming that
d
 /dt=11.78 rad /s. In this case the angle �−�=0.452
−11.78t. If we assume that � increases at a uniform rate
�from −33° at t=0� to 270° at t=0.4 s, then �=13.221t
−0.576 rad and �=1.440t−0.124 rad. The initial force there-
fore acts at an angle �=−0.124 rad=−7.1° to the long axis of
the bat and rotates to an angle �=25.9° at t=0.4 s. Because
d2� /dt2=0, the couple on the bat is given from Eq. �4� by
C=Fd sin �, regardless of the moment of inertia of the bat.

The resulting values of F, �, and C are shown in Fig. 11.
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An alternative solution is possible where the centripetal
force exerts no torque on the bat at t=0.4 s, in which case a
smaller couple can be used to rotate the bat at constant an-
gular velocity �=d� /dt. However, the bat then rotates at a
smaller rate �with smaller �� and arrives at the impact point
at t=0.4 s aligned at an angle �=244°.

The results in Fig. 12 were obtained with d2
 /dt2

=58.9 rad /s so that the bat center of mass would arrive at

=4.712 rad=270° at t=0.4 s. In this case �−� decreases in
an approximately linear fashion from 1.794 rad at t=0 to
−4.285 rad at t=0.4 s. The required couple depends on the
assumed ��t� or ��t� function. For the solution shown in
Fig. 12 it was assumed that the bat accelerated from rest to a
maximum angular velocity �=30 rad /s at t=0.4 s, in a man-
ner similar to that shown in Fig. 3. Such a result is obtained
for �=−0.576−42.7t2+329.83t3−367.81t4. This function
was chosen so that �=0 at t=0.4 s, in which case C=0 and
�=4.285 rad at t=0.4 s. The other coefficients of ��t� were
chosen so that d� /dt=0 at t=0, while d� /dt=30 rad /s and
d2� /dt2=0 at t=0.4.
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